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Abstract. The main objective of this research is determine a graph-
topological property which allows us to count, in polynomial time over

the size of a graph, its number of independent sets, edge covers and
vertex covers.

We show how to apply the Fibonacci recurrence as well as some other
binary recurrences for counting some combinatorial objects in a graph.
We consider basic topologies of a graph such as paths, cycles and some
combination of them. We obtain that for this basic topologies counting
independent sets, vertex covers and edge covers holds a simple algebra
involving Fibonacci numbers.
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1. Introduction

Counting has become an important area in mathematics as well as in theoretical
computer science, although it has received less attention than decision problems.
As a consequence, we know less about the complexity of counting than about the
complexity of decision problems. Actually, there are few counting problems in
graph theory that can be solved exactly in polynomial time, indeed an important
line of research is to determine the class of graphs (or the class of restrictions)
in which any counting problem could be solved in polynomial time.

Counting combinatorial objects over graphs has been an interesting and im-
portant area of historical research in Mathematics, Physics and Computer Sci-
ences. Counting problems also arise naturally in Artificial Intelligence (AI) re-
search, since various methods used in automatic reasoning are reduced to count-
ing problems. For example, computing the ”degree of belief’ in propositional
logic, estimating the degree of reliability in a Bayesian belief network, gener-
ation of explanations to propositional queries, in Bayesian inference, in truth
maintenance systems, and for repairing inconsistent databases [2,10,13]. The
previous problems come from several Al applications such as planning, expert
systems, data-mining, approximate reasoning, etc.

The combinatory problem that we address here is to count over three types
of objects: independent sets, edge covers and vertex covers. All of these counting
problems are #P-complete problems for graphs in general.
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2. Preliminaries

Let G = (V.E) bean undirected graph with vertex set (or nodes set

edges E. Two vertices v and w are called adjacent if there is an e§g)e ‘{/vand set of

joining them. The Neighborhood for z € VisN@)={yeV:{z . evug}GV{f;‘,
, . We

denote the cardinality of a set A, by |A].

The degree of x, denoted by 8(z), is |[N(z)|, and the degree of G is A
mar{6(z):T € V}. A vertex v is pendant if its neighborhood containss e =
vertex; an edge e = {u, v} is pendant if one of its endpoints is a penda zmly one

A path from a vertex v to a vertex w in a graph is a Sequeann fv::eptex.
QUL L1V -« 2 Un=1Tn such that v = vo and v, = w and vy is adjacem(-,) edges:
for 0 < k < n. The length of the path is n. A simple path is a path to vy
V9. Uls- -1 Un—1+Un aT€ all distinct. A cycle is just a nonempty path such that
the first and last vertices are identical, and a simple cycle is a cycle insu;l} that
vertex is repeated, except that the first and last vertices are identical “XICh -y
G is acyclic if it bas no cycles. - A graph

Given a graph G = (V,E), § = (V',E") is a subgraph of G if V' C
E’ contains edges {v,w} € E such that v € V' and w € V'. If E’ contain V and
edge {v.u} € E where v € V' and w € V' then S is called the so‘;‘ams every
induced by § and it is denoted as G||S. We write G — S to deno: !]Tlaph of G
G||(V = V') in the same way. G - v denotes the induced subgraph Ge the graph
and G — e for e € E is the subgraph of G formed by V and E B {e}”(V —{v}),

A connected component of G is a maximal induced subgraph of G :
comnected component is not a proper subgraph of any other connect d, that is, a
of G. Notice that, in a connected component, for every pair of its € 'S,Ubgraph
there is a path from z to y. A tree graph is an acyclic connected ?’elltwes )Y,

With respect to counting problems, two complexity classes ar bg -

#P which is conformed by counting problems computable in( i th(? C.lass
polynomial time, while the class F'P is defined as the class of corzl(zllt('leiel‘lllllllstic
computable in deterministic polynomial time. That is, a functio:l 1fncb«Is)ll;;)lblentjs
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#P if and only if there is a nondeterministic Turing machine A that runs in
polynomial time and such that f(z) equals the number of accepting computation
paths of Al on input z. Similar definitions correspond with FP with the only
difference being that M is a deterministic Turing machine.

Given a graph G = (V, E), S C V is an independent set in G if for every two
\grtices v1, v2 in S, {v;,v2} ¢ E. Let I(G) be the set of all independent sets of

An independent set S € I(G) is mazimal if it is not a subset of any larger
independent set and, it is mazimum if it has the largest size among all inde-
pendent sets in I(G). The determination of the maximum independent set has
received much attention since it is an NP-complete problem [4].

The corresponding counting problem on independent sets, denoted by NI(G),
consists of counting the number of independent sets of a graph G. NI(G) is a #P-
complete problem for graphs G where A(G) > 3. NI(G) remains #P-complete
when it is restricted to 3-regular graphs [5].

A vertez cover of a graph G = (V, E) is a subset U C V that covers every edge
of G; that is, every edge has at least one endpoint in &/. The counting problem
related is to determine the number of vertex covers in G which is denoted by
NU(G). It is known through counting that both independent sets and vertex
covers have equivalent complexity time, in fact, one of those problems can be
seen as the complement of the other problem [13].

An edge cover, &, for a connected graph G = (V,E) is a subset of edges
€ C E which contains edges covering all vertex of G, that is, for each u € V
there is a v € V such that e = {u,v} € £. We denote by NE(G) = |CE(G)| the
number of different edge-covers in a graph, and given any graph G we denote
the problem of computing the number NE(G) as the #Edge_Cover problem. It
is also common to denote NE(G) as #Edge_Covers(G).

The problem of counting all edge-covers sets of a graph G, problem denoted
as #Edge_Covers(G), is a #P-complete problem via the reduction from #Twice-
SAT problem to #Edge_Covers [1]. There is sparse literature about the design
of procedures for computing edge covers of a graph, and about of efficient pro-
cedures for this problem is even less.

One important subject on complexity algorithm theory is to recognize the
class of instances where those counting problems becomes in an easy problem,
i.e. identify the class of graphs where counting independent sets, vertex covers
and edge covers can be done in polynomial time.

In following sections, we present exact and efficient combinatorial procedures
for computing NI(G), as well as NE(G) and NU(G) for some classes of graphs.

3. Efficient Counting for Basic Topologies of a Graph

The value NI(G) for any graph G where G could be a disconnected graph, is
obtained as the product of NI(G;), being G;,i = 1,...,k the set of connected
components of G. This product property also occurs when we want to compute



6 De Ita G.. Contreras Gonzdlez M. and Bello Lopez P.

NE(G) and NU(G) being G a disconnected graph. Then, we should first deter-
mine the set of connected components of G, and this procedure can be done in
. Thus. we would consider just the different kinds of connected

linear time [12]
when we mention a graph G we can suppose

components in G so. from now on,
that it consists in just one connected component.

The sequence: 0, 1, 1, 2, 3. 5, 8. 13, 21, 34, ..., in which each number is the
sum of the preceding two. is known as the Fibonacci sequence. The numbers in
n as the Fibonacci numbers, will be denoted by F; and we
formally define them as: Fp = 0; F1 = 1; Fiy2 = Fiy1+ F;, i 2 0. Each Fibonacci
number can be bounded up and low by @2 > F; = ¢'71,i > 1, and where
= 1/2(1 + V3) is known as the ’golden ratio’.

Any Fibonacci number can be computed as F; = ClosestInteger(p'/\/5).
Thus, lwe can compute any Fibonacci number F; in O(log()) time.

As general strategy for computing NI(G), NE(G) and NU(G) for any graph
G. we will use a depth first search over the graph G, since such a search give us
an order for visiting each node and edge of G just one time.

Ve associate a pair (a;, 3;) to each node of G for counting independent sets
and vertex covers, while such pair is associated to each edge for computing edge
covers. Thus, a series of pairs: (ai, Bi) will be computed according each node or
edge is visited, and this gives us an incremental strategy for counting objects on

the sequence, know

any graph.

Processing Independent Sets on Paths
Let G = P,(V,E) be a linear path (or just a path) with n nodes and n — 1
edges. Suppose that we ordered the edges and nodes in P, in such a way that
V={vy,va...,tn}and E = {e1,...,m} = {{vr va} {v2, v}y s {vno1, v} ).

We build the family f; = {Gi},i=1,...,n where each G; = (V;, E;) is the
induced subgraph of G conformed by the first ¢ nodes of V, according to the
order given to the elements of V. The method for computing NI(G) is based
on the incremental computing of NI(G;),i = 1,...,n. In order to compute
NI(Gy).i = 1....,n we associate to each node v; a pair (i, Bi), where a; carries
the number of independent sets in G; where the node v; does not appear while
3; carries the number of independent sets in G; where the node v; appears. Then
NI(Gi) =a; + 6.
. We can start the depth first search at an extreme of the path and moving to its
incident nodes until arriving to the other extreme (until arriving to the node v,).
The first pair (ay, 3;) begins with the value (1, 1) since for the induced subgraph
G = {v1}, I(G)) = {2, {t1}}. I we know the value for (a;, 3;) for any i < n,
and as the next induced subgraph Gy is built from G; adding the node Vit1
:llnd t.h.e‘edg.e {L',-,.1-,-+1.}, this'is, Vigr = Viu{u,«H},E.,-H = E;U{{vi,viy1}} then

1e pair (a;4, Ji41) is obtained from (e, ;) applying the recurrence equations

(1) on table 1. We will denote with =’ the application of the recurrence (1)
over (a;,3) in order to obtain (ajt1, Bit1)-

Ii 0‘: a path P,, we apply the recurrence (1) according each node is visited
obtaining the serics (a,,3) ¢ (11) = (1) = (3,2) = (5,3) > (8,5) —
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Table 1. Recurrence Equations

Symbol Description Recurrence Number
— Fibonacci Recurrence GidL = Qi+ G (1)
Bit1 =«
® Covered node and for Qi1 = o + Bi @
nodes u, with 6(u) > 2 Bi+1 = a; + Bi
— Visiting a fixed edge Qivy = i+ By (3)
Bi+1=0
Qi1 = Qi
oy =0: -0
Pa) Closing Cycle Bir1 = fi — f;

where S; is the computing line )
over the cycle

(13,8),... and this last series coincides with the Fibonacci numbers: (F;, F;) —
(F3,Fy) — (F4,F3) — (Fs,F3) — (Fg,Fs) — (Fy, Fs). Then, we infer that
(i, 8;) = (Fi42,Fiy1) and then NI(G) = Fiy2 + Fip1,i = 1,...,n. E.g. for

n =5, we have NI(Gs) = F7 + Fs = Fg = 21 Thus, the following theorem
follows.

Theorem 1 Let P, be a path with n nodes, then NI(P,) = Fp42

Processing Vertex Covers on Paths
Let P, be a path of n nodes. A vertex cover C of G is a set of vertices such that
for every edge (u,v) of G at least one of u or v is in C. Given a vertex cover C
of G and a vertex v in C, we say that v is removable if the set C — v is still a
verlex cover of G.

It is NP-hard to determine, given a graph and an integer k, whether the
graph has a vertex cover of size at most k [4].

Vertex cover and independent set are very closely related to graph prob-
lems. Since every edge in E is incident on a vertex in a cover S, there can be
no edge for which both endpoints are not in S. Thus V — S must be an inde-
pendent set. Further, since minimizing S is the same as maximizing V - S, a
minimum vertex cover defines a maximum independent set, and vice versa. This
equivalence means that if you have a program that solves the independent set,
you can use it on your vertex cover problem. For example in Figure 1 we have
S = {s1,82,...,5,} where s; is an independent set and V = {vy,v2,...,vn} a

set of vertices, for each subset in S applying its complement S — V we obtain a
vertex cover.

Corollary 1 A set S is a vertex cover iff its complement V—S is an independent
set in the same graph.

Using the definition of independent set and vertex cover, the proof is rela-
tively easy. If § is an independent set, then for each edge, at most one endpoint
is in S. Thus, for each edge, at least one endpoint is in the complement of S
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V =[{1.2.3.4.5}
S'= (.{1}.(2).{3}.{~1}.{5}.{1,3}.{1,-'1}-{1-5),{2,»1},{2,5},{3,5),{1,3,5}
e {1.2,3.1.5), {2.3.4,51,{1, 3 4,5}, {1,2. 4,5}, {1, 2,3, 5}, {1, 2,3, 4},
{2,1.5}. {2.3.5}, {2.3.4}, {1,3.5}, {1,3, 4}, {1, 2.4}, {2, 4}

Fig. 1. Obtaining vertex covers

since there are exactly two endpoints for each edge. This means exactly that the
complement of S is a vertex cover.
if S is a vertex cover, then each edge has at

The other direction is similar: 1
least one endpoint in S, so no edge has both endpoint in the complement of .S,

and the complement is an independent set.

sion is that the largest size of independent set

The directly following conclu
over in the same graph is the total number of

plus the minimal size of vertex ¢
graph nodes n.

Thus, applying the Fibonacci seri
obtain the value for NU(G) as Fiy2 + Fig1,1= 1552
NU(G) = F; + Fs = Fs = 21. Thus, the following theorem follows.

es using the Recurrence (1) in Figure 2, we
., n. E.g. for n =5, we have

Theorem 2 Let P, be a path with n nodes, then NU(Pn) = Fni2

Processing Edge Covers on Paths
Contrary to the independent sets and vertex cover, to finding an edge cover of

maximum size has polynomial time complexity [4], although its counting version
is a #P-complete problem.

For counting edge covers NE(P,) in a path, we will again apply a depth first
search over P,. During the construction of an edge cover Eofagraph G = (V. E),
we distinguish between two different states of a node. We say that a node u € V
is frec when it has not still been covered by any edge of £, while if the node has
already been covered we say that the node is cover.

The edges which appear in all edge cover sets are called fized edges. For
example, notice that the pendant edges are fixed edges. In the path P, there are
two fixed edges: e, and e, 1 which they coincide with the extreme edges on the
path and with the property that such edges appear in all edge cover sets of Pp.

‘ .\\'e associate with each edge e; € Py, i =0,...,n—1an ordered pair: (o, 5i)
of integer numbers where a; expresses the number of sets in CE(Gi41) where
the edge ¢; appears, while 3; conveys the number of sets in CE(Gi+1) where the
e(lgel(z,- does not appear. Thus, NE(Giy1) =7 = ai + Bi.

If we visit P, in depth-first search computing (@i, B;) according each edge
€ l: {vi, L.',H}.i =10 St n —1is visited, we obtain at the end of this traversing
a las air f hich renr y
7”_11:1):1111_1(0_:,13‘._-?,'14) which represent the value for #Edge_Covers(P,) =
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We have to assign to the first pair (ag, ) of the path the value (1,0) since
it means that the edge ¢o always appears in all edge cover sets, notice that for
each pendant edge e, which starts a series of values (ap, 3p) the initial value has
to be (1,0).

If we know the value for (a;, 3;) for any i < n — 2, and as the next induced
subgraph G4, is built from G; adding the node v;; and the edge ¢; = {v;, vit1}-
Considering that the node v; is free, for any edge cover set of G;4; where the
edge ¢;_) appears (a;—; cases) the edge e; can appear or it can not appear since
in both cases the node v; has been covered for ¢;_1, while for any edge cover set
where the edge e;_; does not appear (3;_, cases) the edge ¢; must be considered
in order to cover the node v;. So. the recurrence relation for computing the new
pair (a;, 3;) is built from recurrence (1).

The other case is when the node v; has already been covered, for example
when we are considering a node of degree greater than two. In such case, the
edge e; can be taken into account or not since in both cases the node v; has
already been covered, then the computing of the new pair (ai, 3;) is given by
the recurrence (2). We will denote with '@’ the application of the recurrence (2)
over (ay, 3;) in order to obtain (ay1, Biy1).

Those two relations give us a complete way to compute the pair (a;, 3;) in
base on the previous pair (a;—-1,8;-1) and considering when the node v; is free
or cover. After to compute (a4, 3;) we label to the node v; as a covered node.

When we arrive to the last edge e,—; which is a fixed edge, we have computed
the pair (a, -2, 3,-2) and as e, —1 has to appear in all edge cover sets of P, then
the edge e,_; appears in all the cases, that is, in a,_; = ap_2 + Bn_2 cases,
and e,_; has not chance to do not appear in the edge cover sets of Py, so that
Bn-1 = 0. This is the case of processing a fixed edge, so we use the recurrence
(3) on table 1.

Then, the pair associated with the last edge in the path, is: (ap—1.8n-1) =
(an—2 + Bn_2,0). We will denote with "’ the application of the recurrence (3)
over (ay-2,3,-2) in order to obtain (an—1,8n-1)-

Nodes : Node, Node> Nodes Nodey Nodes Nodeg
(@i, ) : (a1, B1) — (a2, B2) — (a3, 83) — (@4, 81) — (a5, 35) — (@6, 36)
NIG): (1,1)> (21)— (3,2)—(53) —(8,5) —(13,8)=21
NU(G): (1,1)— (2,1)= (3,2)—(53) — (85 —(13,8)=21

Edges : Edge, Edgea Edges Edgey Edges
NE(G): (1,00 —» (L, 1)=(2,1) —=(3,2) ~(50=5

Fig. 2. Processing a linear path

The series (o, 8;),i = 1,...,n — 1 is built based on recurrence (1), (2) and
(3) allow us to compute NE(G). In Figure 2 we show the way of computing the
number of independent sets, the vertex covers and edge covers according to re-
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currences in table 1. Starting at an extreme of the path e.g. beginning at v, or e;
and moving to its incident node (edge) while the recurrence (1), (2) or (3) are ap-
plied. in lincar time over the size of Pn.we obtain the values for NI(Ps), NU(Ps)
and NE(FPg). Then. #Edge_Covers(P,) is computed as NE(P,) = an—2+ Bn_2.
And this last value: an—2 + Bn—2 in this case az + B3 = 3+ 2 = 5 corresponds
to F,,. being F, the n-th Fibonacci number, this is NE(Ps) = Fs = 5. Thus, the

following theorem is deduced.

Theorem 3 Let P, be a path of n nodes, then: NE(P,) = F,

3.1. Processing simple cycles

In this section we show that for the case of simple cycles C, with n edges, count-
-ertex covers and edges covers. all of them can also be

ing independent sets, v .
obtained using Fibonacci recurrences. Furthermore, we show that for this topol-
ogy the three functions: NI(Cn), NU(Cn) and NE(Cn) coincide in the value:

Frio— Froa.

Processing Independent Sets on Simple Cych.as
Let G = (V.E), [V|=n= |E| = m be a simple cycle, i.e. every node in V' has
degree two. In this case, the cycle can be decomposed as: G = G’ U {cm}, where
G' = (V.E"), E' = {c1,-rCm-1}- G constitutes so a path and ¢y, = {vm,v1} is
the edge which if is added to G', forms the cycle G.

Observe that every independent set S of G is an independent set of G’, that
is. S(G) C S(G") since G has one edge more than G'. Thus, if S € S(G’) and
v; € S and v, € S then S is not an independent set of G. Then, S(G) can be
built from S(G’) by eliminating those independent sets containing the nodes: v;
and v,,. Thus, NI(G) = NI(G') - [{S € I(G):v1 €SAvn € S}H.

We can apply the previous case for computing NI(G’) since G’ is a path.
And, in order to count |{S €S(G’) : v1 € S A vm € S }|, we can fix on S(G’)
the independent sets where v; is involved, which is done by computing a new
series (a';.8;), i=1,...,m starting with the pair (a},B;) = (0,1) considering in
this way only the independent sets of S(G') where v; appears. We apply the
recurrence (1) for computing the new series: (a4,B)), i=2, ...,m and also, in
order to consider only the independent sets where v, appears, the final pair
(atn:3;,) is taken only as (0, 5y,)-

If we express the new series in terms of Fibonacci numbers, we have that
@4.8) = (0.1) = (Fo.F1) - (ahB) = (1,0) = (F1,Fo) — (a3,03) =
(11) = (B F),..., (aly,Bh) = (Fm-1,Fm-2), and the value for the final
pair (al,,3,) = (0,8.,) is (0, Fm—2), then |{S € I(G") : v1 € SAvm € S}| =
0+ 3, = Fjn_s. Thus, we can formulate the following theorem.

Theorem 4 If G is a simple cycle with n nodes then the number of independent
sels of G, expressed in lerms of the Fibonacci numbers, is: NI(G) = Fnya—Fp_a.

. In the previous figure, we denote with "' the application of recurrence (4)
in order to obtain the last pair (a,, 3,,) which closes the cycle.
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(@1,81) — (a2,82) — (a3,B3) — (aa,B1) — (as,Bs) — (e, Bs)
(1,1) — (21 - (3,2) - (53) — (85) — (13,8)
0,1) = (1,00 — (L,1) = (2,1) — (3,2) — (5,3)
= (13,8)  (5,3) = (13,5)

Fig. 3. Obtaining independent sets, vertex covers and edges covers on a cycle

In figure 3, we have that (am,Bm) = (s, 8) = (13,8), (0,43,,) = (0,8¢) =
(0,3), and (13,8)—(0,3) = (13,5). Then, NI(G) = NI(G') - |{S € [(G") : v1 € S
Avp € S}| = ,,,+2—F 2=21-3=18

Processing Vertex Covers on Simple Cycles
Notice that if & is a vertex cover, then each edge has at least one endpoint in U,
so no edge has both endpoint in the complement of U, and the complement is an
independent set and applying the corollary(1): NI(G) = NU(G). For example
let be V = {1,2,3,4,5,6} in Figure 3 and let be S; = {1,5} an independent
set then V — S; = {2,3,4,6} is a vertex cover. For each independent set S; we
obtain the vertex cover: V — S; = U;.

Therefore, we have that in this case NI(C,) = NU(C,) and theorem 4
holds for counting the number of vertex covers in a simple cycle Cp. Thus
NU(Cp) = Fry2 — Fa-2

Processing Edge Covers on Simple Cycles
Let Poy2 = (V/, E') be the path where V! = VU{vg, Unt1, Un42} and if we define
the edges: ey = {vo,v1},€), = {vn,Vn41} and €, ;; = {Vn41,vn42} then E' =
(E = {en}) U {ep, €}, €h41 ), that is, E' = {eg,e1,€2,...,€n-2,€n-1,€5, €041}
Notice that ey and ej ., are the fixed edges on the path Py .

We notice that every edge—cover set of Cp, is an edge-cover for P, if the
edge e, is changed by the edge e}, and adding the fixed edges: e and e}, ,, of
Py 42, that is, for each € € CE(C,,) we can build an £’ € CE( n+o) changing the
edge e, by e, (if it appears in £) and adding the fixed edves ey and e, ;.

Then NE(Cy) < NE(Pny2), in fact we can count the difference NE(Pp42) —
NE(C,) in exactly way. Each edge-cover of P,42 which does not contain to the
edges e; and e/, can not be an edge-cover of C,. Then, in order to compute
NE(C,), we can count NE(P,42) and subtract the number of edge-covers of
Py 42 where the edges e; and e}, do not appear. We apply theorem 3 for com-
puting NE(Py42) = Fpya.

And, in order to count |[{€ € CE(Put2) : €1 ¢ EAen ¢ E}, we can fix
on CE(P,4s) the edge-covers where ey does not belong to an edge cover by
computing a new series (a';,8';), i=L,...,n starting with the pair (a}, 8}) = (0.1),
considering in this way only the edge covers where e; does not appear. We apply
recurrence (1) for computing the new series: (a},5;), i=2, ...,n and alzo, in order
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to consider only the edge covers where the edge ¢), does not appear, the final

pair (a4, 3,) is taken only as (0. 3y,).
Expressing the new series in terms of Fibonacci numbers, we have that

(@l.3]) = (0.1) = (Fo. Fi) — (a3 84) = (1.0) = (F1, Fo) — (a4, ) = (1,1) =
(Fa. F1)o.oos (ah.3) = (Fao1e F,,_2), and the value for the final pair (,, 8},) =
(0.34) is (0, Fr_2). Then [{£ € CEWG):e1 €ENeEL EEY =04, = Fy_o.
So that. NE(Cp) = NEPat2) — {€ € CE(Pay2) €1 ¢ ENep, ¢ E}| =
an+3n =3, = Fnga — Fa-2. Thus, we can formulate the following theorem:

Theorem 5 If Cy is a simple cycle with n nodes then the number of edge cover
sels expressed in terms of Fibonacci numbers, is: NE(Cp) = Fpyo — F,_,.

Notice that we are considering that all nodes in the simple cycle C,, are
free. But in case that there exists covered nodes in the cycle then we apply the
recurrence (2) instead of recurrence (1) when we cross through that covered node.

4. Processing Combinations of Cycles and Paths

If a graph G has some simple combinations of paths and cycles, we can ap-
plv the above procedures based on recurrences on table 1 in order to compute
NI(G), NU(G) and NE(G).

The depth first search is a guide for traversing through the graph and ac-
cording each node and edge is visited its associated pair (o, 8;) is computed.
In this case, we consider a main computing thread L, that is, a main series of
pairs (aj, 3i)- Special care has to be taken at the beginning and the end of any
cycle, since the recurrence (4) has to be applied in some cases. We denote by L.
the auxiliary thread for carrying the values to decrement at the end of a cycle.

e show on Figure 4 how to compute NI(G) and NU(G) for a combination of
paths and a cycle. According to this example, we have that NI(G) = NU(G) =

132.

Nodes: Node, Nodes Nodes Nodey Nodes Nodeg Noder
(ar, i) : (a1, 81) = (02, 82) = (@3,83) — (a4, B1) = (a5, 85) — (as, Bs) — (7, 67)
Ly: (L) —(21) =32 —(53) —(85) —(13,8) — (21,13)

g (0,3) =300 —(3,3) —(s,3)
Nodes: Nodeg Nodeg Nodeo
(ai. i) : (s, 3s) (as,B9) — (cu10, B1o)
Ly: (31.21) A (34,21) — (49,34) — (83,49) = 132
Le: (9,6) ~(0,6)

=(34,15)

Fig. 4. Counting independent sets and vertex covers on a cycle
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In the case of edge covers the procedure is more complex because we should consider
covered nodes and fixed edges. If a graph G is a combination of paths and cycles without
consider the appearance order of those elements, the method consist in apply recurrence
(1) over the principal computing thread L,. However when a cycle appear, contrary to
independent sets and vertex covers, the recurrence (2) is applied over L, because the
actual node has a degree greater than 2.

Let G = (V,E), |V| =n = |E| = m be a path with a simple cycle (see fig. 5). We
compute NE(G) in following way: We initialize the main thread L, with (ai, 8;) = (1,0)
since e, is a fixed edge. The recurrence (1) is applied until edge ez where the recurrence
(2) has to be applied since §(v4) > 2. The edge es generates a new computing thread
L.y marking the beginning of the cycle. The initial pair is (0,1) indicating that the
edges e3 and e4 do not appear in just one case.

Then, we apply recurrence (1) until arrive to edge ez where the recurrence (2)
has again to be applied over L, and L. because §(vs) > 2. At the same time, two
new threads are generated e; — L, with the values (0,9) that represents the cases
where the edge ez does not appear and the thread ez — L) with the values (0, 1) that
represents the case where the edge es does not appear. The recurrence (2) is applied
for each computing thread. As the edge es closes the cycle then the recurrence (4) is
applied between the threads L, with Lc) and between e; — Lp with e — Lcy. The

edge es also generates the computing thread L.s with the pair (0,8) indicating that
the edges e7 and es do not appear in 8 cases. For the edge e the recurrence (2) is
applied for two computing threads and then the recurrence (4) is applied in order to
close the cycle. Finally, when the computing threads arrive to edge ejo we apply the

recurrence (1) and after we apply the recurrence (3) for fixed edge in order to obtain
NE = a0+ Pro =82

Edges: Edge, Edgea Edges Edgey Edges Edges
Lp: (1L,0) - (1,1) — @21 e (33— (63)—(9.6)
Ler: 01— (1L0)—(11)
Edges: FEdger Edges Edgeo

Lp: (15,9) ® (24,24)  (3,3) = (24,21) ® (45,45)  (8,8) = (45,37)
La: (1) o (3,3)

er—L,: (0,9) @ (9,9) ~(1,1)=(9,8)

er—La:(0,1) o (1,1)

Les: 0,8) ® (8,8)

FEdges : Edgeyo

Ly: (45,37) — (82,45) — (82,0) =82

Fig. 5. Obtaining NE(G) on a cycle combined with a path

When we consider a tree graph T, we have shown how to compute N I(T) in efficient
way [3]. The same algorithm designed for computing NI(T') can be used for computing
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NU(T). Only in the case of computing NE(T) a more elaborate algorithm has to be
designed, even it can work into a polynomial time complexity.

5. Conclusions

\We show that the Fibonacci recurrence can be applied for counting; independent sets,
vertex covers and edges covers in basic topologies of a graph. For example, for paths,
simple cycles and cycles with paths. For this class of topologies, we show that the
number of independent sets, the number of vertex covers and the number of edge
covers can be computed in polynomial time, in fact, in linear time complexity on the
size of the input graph.

The efficient methods can be extended for considering more complex topologies,
for example the procedures presented here can be used as a cut’s criterion in a branch

and bound method for processing general graphs.
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